ASR

Going beyond Accuracy: Key STT API Features for Contact Center Voice AI Apps

This article is for companies building Voice AI Apps targeting the Contact Center. It outlines the key technical features, beyond accuracy, that are important while evaluating an OEM Speech-to-Text (STT) API. Usually, most analyses focus on the importance of accuracy and metrics like benchmarks of word error rates (WER). While accuracy is very important, there are other technical features that are equally important for contact center AI apps.

Introduction

There are multiple use-cases for Voice AI Apps in the ContactCenter. Some of the common use cases are 1) AI Voicebot or Voice Agent 2) Real-time Agent Assist 3)Post Call Speech Analytics.

This article is focused on the third use-case which is Post-Call Speech Analytics. This use-case relies on batch STT APIs while the first two use-cases require streaming transcription. This Speech Analytics App helps the Quality Assurance and Agent-Performance management process. This article is intended for Product Managers and Engineering leads involved in building such AI Voice Apps that target the QA, Coaching and Agent Performance management process in the call center. Companies building such apps could include 1) CCaaS Vendors adding AI features, 2) Enterprise IT or Call Center BPO Digital organizations building an in-house Speech Analytics App 3) Call Center Voice AI Startups

1. Accurate Speaker Diarization

Very often, call-center audio recordings are only available in mono. And even if the audio recording is in 2-channel/stereo, it could include multiple voices in a single channel. For example, the Agent channel can include IVR prompts and hold music recordings in addition to the Agent voice. Hence a very important criterion for an OEM Speech-to-Text vendor is that they provide accurate speaker diarization.

We would recommend doing a test of various speech-to-text vendors with a good sample set of mono audio files. Select files that are going to be used in production and calculate the Diarization Error Rate. Here is a useful link that outlines the technical aspects of  understanding and measuring speaker diarization.

2. Accurate PII/Named Entity Redaction and PCI Compliance

A very common requirement of Voice AI Apps is to redact PII – which stands for Personally Identifiable Information. PII Redaction is a post-processing step that a Speech-to-Text API vendor needs to perform. It involves accurate identification of entities like name, email address, phone number and mailing addresses and subsequent redaction both in text and audio. In addition, there are PCI – Payment Card Industry – specific named entities like Credit Card number, 3-digit PIN and expiry dates. Successful PII and PCI redaction requires post-processing algorithms to accurately identify a wide range of PII entities and cover a wide range of test scenarios. These test scenarios need to cover scenarios where there errors in user input and errors in speech recognition too.

There is another important capability related to PCI/PII redaction. Very often PII/PCI entities are present across multiple turns in a conversation between an Agent and Caller. It is important that the post-processing algorithm of the OEM Speech-to-Text vendor is able to process both channels simultaneously when looking for these named entities.

3. Language Detection

A Call Center audio recording could start off in one languageand then switch to another. The Speech-to-Text API should be able to detect language and then perform the transcription.

4. Hints/Keyword Boosting

There will always be words that are not accurately transcribed by even the most accurate Speech-to-Text model. The API should include support for Hints or Keyword Boosting where words that are consistently misrecognized can get replaced by the correctly transcribed word. This is especially applicable for names of companies, products and industry specific terminology.

5. Sentiment and Emotion

There are AI models that measure sentiment and emotion, and these models can be incorporated in the post-processing stage of transcription to enhance the Speech-to-Text API. Sentiment is extracted from the text of the transcript while Emotion is computed from the tone of the audio. A well-designed API should return Sentiment and Emotion throughout the interaction between the Agent and Caller. It should effectively compute the overall sentiment of the call by weighting the “ending sentiment” appropriately.

6. Talk-Listen Ratios, Overtalk and Other Incidents

While measuring the quality of an Agent-Caller conversation, there are a few important audio-related metrics that are tracked in a call center.  These include Talk-Listen Ratios, overtalk incidents and excessive silence and hold.

7. Other Optional LLM-Powered Features

There are other LLM-powered features like computation of theQA Score and the summary of the conversation. However, these are features are builtby the developer of the AI Voice App by integrating the output of the Speech-to-TextAPI with the APIs offered by the LLM of the developer’s choice.

Voicegain: Voice AI Under Your Control

Voicegain: Build Voice AI apps with our Speech-to-Text and LLM-powered NLU APIs. Record & Transcribe meetings, contact center calls, videos, etc. Get LLM-powered Summary, Sentiment and more. Build Conversational Voice Bots that integrate with your On-prem or cloud CCaaS platform. Get started today.

See how Voicegain works — get a demo of Voicegain today.

Tell us what you are building!

We love talking with you about generative AI, speech & transcription, & privacy—whether you're a startup, a Fortune 500 company, or anywhere in between.
By sending your message, you agree to Voicegain’s  Terms of Service and Privacy Policies.
Thank you for reaching us!
We will be in touch with you shortly.
Oops! Something went wrong while submitting the form. Please, try again!